Euclid's Division Lemma Prime Factorisation Calculator Factors of a Number Calculator LCM Calculator GCF Calculator Factor Tree Calculator LCM of Decimals LCM of Fractions GCF of Decimals GCF of Fractions

Highest Common Factor of 125, 180, 300 using Euclid's algorithm

HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 125, 180, 300 i.e. 5 the largest integer that leaves a remainder zero for all numbers.

HCF of 125, 180, 300 is 5 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 125, 180, 300 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 125, 180, 300 is 5.

HCF(125, 180, 300) = 5

HCF of 125, 180, 300 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 125, 180, 300 is 5.

Highest Common Factor of 125,180,300 using Euclid's algorithm

Step 1: Since 180 > 125, we apply the division lemma to 180 and 125, to get

180 = 125 x 1 + 55

Step 2: Since the reminder 125 ≠ 0, we apply division lemma to 55 and 125, to get

125 = 55 x 2 + 15

Step 3: We consider the new divisor 55 and the new remainder 15, and apply the division lemma to get

55 = 15 x 3 + 10

We consider the new divisor 15 and the new remainder 10,and apply the division lemma to get

15 = 10 x 1 + 5

We consider the new divisor 10 and the new remainder 5,and apply the division lemma to get

10 = 5 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 5, the HCF of 125 and 180 is 5

Notice that 5 = HCF(10,5) = HCF(15,10) = HCF(55,15) = HCF(125,55) = HCF(180,125) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 300 > 5, we apply the division lemma to 300 and 5, to get

300 = 5 x 60 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 5, the HCF of 5 and 300 is 5

Notice that 5 = HCF(300,5) .

Frequently Asked Questions on HCF of 125, 180, 300 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 125, 180, 300?

Answer: HCF of 125, 180, 300 is 5 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 125, 180, 300 using Euclid's Algorithm?

Answer: For arbitrary numbers 125, 180, 300 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.