Highest Common Factor of 155, 9700, 9164 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 155, 9700, 9164 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 155, 9700, 9164 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 155, 9700, 9164 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 155, 9700, 9164 is 1.

HCF(155, 9700, 9164) = 1

HCF of 155, 9700, 9164 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 155, 9700, 9164 is 1.

Highest Common Factor of 155,9700,9164 using Euclid's algorithm

Highest Common Factor of 155,9700,9164 is 1

Step 1: Since 9700 > 155, we apply the division lemma to 9700 and 155, to get

9700 = 155 x 62 + 90

Step 2: Since the reminder 155 ≠ 0, we apply division lemma to 90 and 155, to get

155 = 90 x 1 + 65

Step 3: We consider the new divisor 90 and the new remainder 65, and apply the division lemma to get

90 = 65 x 1 + 25

We consider the new divisor 65 and the new remainder 25,and apply the division lemma to get

65 = 25 x 2 + 15

We consider the new divisor 25 and the new remainder 15,and apply the division lemma to get

25 = 15 x 1 + 10

We consider the new divisor 15 and the new remainder 10,and apply the division lemma to get

15 = 10 x 1 + 5

We consider the new divisor 10 and the new remainder 5,and apply the division lemma to get

10 = 5 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 5, the HCF of 155 and 9700 is 5

Notice that 5 = HCF(10,5) = HCF(15,10) = HCF(25,15) = HCF(65,25) = HCF(90,65) = HCF(155,90) = HCF(9700,155) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 9164 > 5, we apply the division lemma to 9164 and 5, to get

9164 = 5 x 1832 + 4

Step 2: Since the reminder 5 ≠ 0, we apply division lemma to 4 and 5, to get

5 = 4 x 1 + 1

Step 3: We consider the new divisor 4 and the new remainder 1, and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 5 and 9164 is 1

Notice that 1 = HCF(4,1) = HCF(5,4) = HCF(9164,5) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 155, 9700, 9164 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 155, 9700, 9164?

Answer: HCF of 155, 9700, 9164 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 155, 9700, 9164 using Euclid's Algorithm?

Answer: For arbitrary numbers 155, 9700, 9164 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.