Highest Common Factor of 225, 814, 293 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 225, 814, 293 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 225, 814, 293 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 225, 814, 293 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 225, 814, 293 is 1.

HCF(225, 814, 293) = 1

HCF of 225, 814, 293 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 225, 814, 293 is 1.

Highest Common Factor of 225,814,293 using Euclid's algorithm

Highest Common Factor of 225,814,293 is 1

Step 1: Since 814 > 225, we apply the division lemma to 814 and 225, to get

814 = 225 x 3 + 139

Step 2: Since the reminder 225 ≠ 0, we apply division lemma to 139 and 225, to get

225 = 139 x 1 + 86

Step 3: We consider the new divisor 139 and the new remainder 86, and apply the division lemma to get

139 = 86 x 1 + 53

We consider the new divisor 86 and the new remainder 53,and apply the division lemma to get

86 = 53 x 1 + 33

We consider the new divisor 53 and the new remainder 33,and apply the division lemma to get

53 = 33 x 1 + 20

We consider the new divisor 33 and the new remainder 20,and apply the division lemma to get

33 = 20 x 1 + 13

We consider the new divisor 20 and the new remainder 13,and apply the division lemma to get

20 = 13 x 1 + 7

We consider the new divisor 13 and the new remainder 7,and apply the division lemma to get

13 = 7 x 1 + 6

We consider the new divisor 7 and the new remainder 6,and apply the division lemma to get

7 = 6 x 1 + 1

We consider the new divisor 6 and the new remainder 1,and apply the division lemma to get

6 = 1 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 225 and 814 is 1

Notice that 1 = HCF(6,1) = HCF(7,6) = HCF(13,7) = HCF(20,13) = HCF(33,20) = HCF(53,33) = HCF(86,53) = HCF(139,86) = HCF(225,139) = HCF(814,225) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 293 > 1, we apply the division lemma to 293 and 1, to get

293 = 1 x 293 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 293 is 1

Notice that 1 = HCF(293,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 225, 814, 293 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 225, 814, 293?

Answer: HCF of 225, 814, 293 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 225, 814, 293 using Euclid's Algorithm?

Answer: For arbitrary numbers 225, 814, 293 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.