Highest Common Factor of 2630, 1163 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 2630, 1163 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 2630, 1163 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 2630, 1163 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 2630, 1163 is 1.

HCF(2630, 1163) = 1

HCF of 2630, 1163 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 2630, 1163 is 1.

Highest Common Factor of 2630,1163 using Euclid's algorithm

Highest Common Factor of 2630,1163 is 1

Step 1: Since 2630 > 1163, we apply the division lemma to 2630 and 1163, to get

2630 = 1163 x 2 + 304

Step 2: Since the reminder 1163 ≠ 0, we apply division lemma to 304 and 1163, to get

1163 = 304 x 3 + 251

Step 3: We consider the new divisor 304 and the new remainder 251, and apply the division lemma to get

304 = 251 x 1 + 53

We consider the new divisor 251 and the new remainder 53,and apply the division lemma to get

251 = 53 x 4 + 39

We consider the new divisor 53 and the new remainder 39,and apply the division lemma to get

53 = 39 x 1 + 14

We consider the new divisor 39 and the new remainder 14,and apply the division lemma to get

39 = 14 x 2 + 11

We consider the new divisor 14 and the new remainder 11,and apply the division lemma to get

14 = 11 x 1 + 3

We consider the new divisor 11 and the new remainder 3,and apply the division lemma to get

11 = 3 x 3 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2630 and 1163 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(11,3) = HCF(14,11) = HCF(39,14) = HCF(53,39) = HCF(251,53) = HCF(304,251) = HCF(1163,304) = HCF(2630,1163) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 2630, 1163 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 2630, 1163?

Answer: HCF of 2630, 1163 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 2630, 1163 using Euclid's Algorithm?

Answer: For arbitrary numbers 2630, 1163 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.