Highest Common Factor of 312, 195, 324, 807 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 312, 195, 324, 807 i.e. 3 the largest integer that leaves a remainder zero for all numbers.

HCF of 312, 195, 324, 807 is 3 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 312, 195, 324, 807 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 312, 195, 324, 807 is 3.

HCF(312, 195, 324, 807) = 3

HCF of 312, 195, 324, 807 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 312, 195, 324, 807 is 3.

Highest Common Factor of 312,195,324,807 using Euclid's algorithm

Highest Common Factor of 312,195,324,807 is 3

Step 1: Since 312 > 195, we apply the division lemma to 312 and 195, to get

312 = 195 x 1 + 117

Step 2: Since the reminder 195 ≠ 0, we apply division lemma to 117 and 195, to get

195 = 117 x 1 + 78

Step 3: We consider the new divisor 117 and the new remainder 78, and apply the division lemma to get

117 = 78 x 1 + 39

We consider the new divisor 78 and the new remainder 39, and apply the division lemma to get

78 = 39 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 39, the HCF of 312 and 195 is 39

Notice that 39 = HCF(78,39) = HCF(117,78) = HCF(195,117) = HCF(312,195) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 324 > 39, we apply the division lemma to 324 and 39, to get

324 = 39 x 8 + 12

Step 2: Since the reminder 39 ≠ 0, we apply division lemma to 12 and 39, to get

39 = 12 x 3 + 3

Step 3: We consider the new divisor 12 and the new remainder 3, and apply the division lemma to get

12 = 3 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 39 and 324 is 3

Notice that 3 = HCF(12,3) = HCF(39,12) = HCF(324,39) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 807 > 3, we apply the division lemma to 807 and 3, to get

807 = 3 x 269 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 3 and 807 is 3

Notice that 3 = HCF(807,3) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 312, 195, 324, 807 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 312, 195, 324, 807?

Answer: HCF of 312, 195, 324, 807 is 3 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 312, 195, 324, 807 using Euclid's Algorithm?

Answer: For arbitrary numbers 312, 195, 324, 807 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.