Highest Common Factor of 316, 433, 229 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 316, 433, 229 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 316, 433, 229 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 316, 433, 229 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 316, 433, 229 is 1.

HCF(316, 433, 229) = 1

HCF of 316, 433, 229 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 316, 433, 229 is 1.

Highest Common Factor of 316,433,229 using Euclid's algorithm

Highest Common Factor of 316,433,229 is 1

Step 1: Since 433 > 316, we apply the division lemma to 433 and 316, to get

433 = 316 x 1 + 117

Step 2: Since the reminder 316 ≠ 0, we apply division lemma to 117 and 316, to get

316 = 117 x 2 + 82

Step 3: We consider the new divisor 117 and the new remainder 82, and apply the division lemma to get

117 = 82 x 1 + 35

We consider the new divisor 82 and the new remainder 35,and apply the division lemma to get

82 = 35 x 2 + 12

We consider the new divisor 35 and the new remainder 12,and apply the division lemma to get

35 = 12 x 2 + 11

We consider the new divisor 12 and the new remainder 11,and apply the division lemma to get

12 = 11 x 1 + 1

We consider the new divisor 11 and the new remainder 1,and apply the division lemma to get

11 = 1 x 11 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 316 and 433 is 1

Notice that 1 = HCF(11,1) = HCF(12,11) = HCF(35,12) = HCF(82,35) = HCF(117,82) = HCF(316,117) = HCF(433,316) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 229 > 1, we apply the division lemma to 229 and 1, to get

229 = 1 x 229 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 229 is 1

Notice that 1 = HCF(229,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 316, 433, 229 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 316, 433, 229?

Answer: HCF of 316, 433, 229 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 316, 433, 229 using Euclid's Algorithm?

Answer: For arbitrary numbers 316, 433, 229 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.