Highest Common Factor of 328, 853, 156, 348 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 328, 853, 156, 348 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 328, 853, 156, 348 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 328, 853, 156, 348 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 328, 853, 156, 348 is 1.

HCF(328, 853, 156, 348) = 1

HCF of 328, 853, 156, 348 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 328, 853, 156, 348 is 1.

Highest Common Factor of 328,853,156,348 using Euclid's algorithm

Highest Common Factor of 328,853,156,348 is 1

Step 1: Since 853 > 328, we apply the division lemma to 853 and 328, to get

853 = 328 x 2 + 197

Step 2: Since the reminder 328 ≠ 0, we apply division lemma to 197 and 328, to get

328 = 197 x 1 + 131

Step 3: We consider the new divisor 197 and the new remainder 131, and apply the division lemma to get

197 = 131 x 1 + 66

We consider the new divisor 131 and the new remainder 66,and apply the division lemma to get

131 = 66 x 1 + 65

We consider the new divisor 66 and the new remainder 65,and apply the division lemma to get

66 = 65 x 1 + 1

We consider the new divisor 65 and the new remainder 1,and apply the division lemma to get

65 = 1 x 65 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 328 and 853 is 1

Notice that 1 = HCF(65,1) = HCF(66,65) = HCF(131,66) = HCF(197,131) = HCF(328,197) = HCF(853,328) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 156 > 1, we apply the division lemma to 156 and 1, to get

156 = 1 x 156 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 156 is 1

Notice that 1 = HCF(156,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 348 > 1, we apply the division lemma to 348 and 1, to get

348 = 1 x 348 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 348 is 1

Notice that 1 = HCF(348,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 328, 853, 156, 348 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 328, 853, 156, 348?

Answer: HCF of 328, 853, 156, 348 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 328, 853, 156, 348 using Euclid's Algorithm?

Answer: For arbitrary numbers 328, 853, 156, 348 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.