Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 3664, 4825 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 3664, 4825 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 3664, 4825 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 3664, 4825 is 1.
HCF(3664, 4825) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 3664, 4825 is 1.
Step 1: Since 4825 > 3664, we apply the division lemma to 4825 and 3664, to get
4825 = 3664 x 1 + 1161
Step 2: Since the reminder 3664 ≠ 0, we apply division lemma to 1161 and 3664, to get
3664 = 1161 x 3 + 181
Step 3: We consider the new divisor 1161 and the new remainder 181, and apply the division lemma to get
1161 = 181 x 6 + 75
We consider the new divisor 181 and the new remainder 75,and apply the division lemma to get
181 = 75 x 2 + 31
We consider the new divisor 75 and the new remainder 31,and apply the division lemma to get
75 = 31 x 2 + 13
We consider the new divisor 31 and the new remainder 13,and apply the division lemma to get
31 = 13 x 2 + 5
We consider the new divisor 13 and the new remainder 5,and apply the division lemma to get
13 = 5 x 2 + 3
We consider the new divisor 5 and the new remainder 3,and apply the division lemma to get
5 = 3 x 1 + 2
We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get
3 = 2 x 1 + 1
We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 3664 and 4825 is 1
Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(5,3) = HCF(13,5) = HCF(31,13) = HCF(75,31) = HCF(181,75) = HCF(1161,181) = HCF(3664,1161) = HCF(4825,3664) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 3664, 4825?
Answer: HCF of 3664, 4825 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 3664, 4825 using Euclid's Algorithm?
Answer: For arbitrary numbers 3664, 4825 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.