Highest Common Factor of 368, 896 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 368, 896 i.e. 16 the largest integer that leaves a remainder zero for all numbers.

HCF of 368, 896 is 16 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 368, 896 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 368, 896 is 16.

HCF(368, 896) = 16

HCF of 368, 896 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 368, 896 is 16.

Highest Common Factor of 368,896 using Euclid's algorithm

Highest Common Factor of 368,896 is 16

Step 1: Since 896 > 368, we apply the division lemma to 896 and 368, to get

896 = 368 x 2 + 160

Step 2: Since the reminder 368 ≠ 0, we apply division lemma to 160 and 368, to get

368 = 160 x 2 + 48

Step 3: We consider the new divisor 160 and the new remainder 48, and apply the division lemma to get

160 = 48 x 3 + 16

We consider the new divisor 48 and the new remainder 16, and apply the division lemma to get

48 = 16 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 16, the HCF of 368 and 896 is 16

Notice that 16 = HCF(48,16) = HCF(160,48) = HCF(368,160) = HCF(896,368) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 368, 896 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 368, 896?

Answer: HCF of 368, 896 is 16 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 368, 896 using Euclid's Algorithm?

Answer: For arbitrary numbers 368, 896 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.