Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 397, 688, 765 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 397, 688, 765 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 397, 688, 765 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 397, 688, 765 is 1.
HCF(397, 688, 765) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 397, 688, 765 is 1.
Step 1: Since 688 > 397, we apply the division lemma to 688 and 397, to get
688 = 397 x 1 + 291
Step 2: Since the reminder 397 ≠ 0, we apply division lemma to 291 and 397, to get
397 = 291 x 1 + 106
Step 3: We consider the new divisor 291 and the new remainder 106, and apply the division lemma to get
291 = 106 x 2 + 79
We consider the new divisor 106 and the new remainder 79,and apply the division lemma to get
106 = 79 x 1 + 27
We consider the new divisor 79 and the new remainder 27,and apply the division lemma to get
79 = 27 x 2 + 25
We consider the new divisor 27 and the new remainder 25,and apply the division lemma to get
27 = 25 x 1 + 2
We consider the new divisor 25 and the new remainder 2,and apply the division lemma to get
25 = 2 x 12 + 1
We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 397 and 688 is 1
Notice that 1 = HCF(2,1) = HCF(25,2) = HCF(27,25) = HCF(79,27) = HCF(106,79) = HCF(291,106) = HCF(397,291) = HCF(688,397) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 765 > 1, we apply the division lemma to 765 and 1, to get
765 = 1 x 765 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 765 is 1
Notice that 1 = HCF(765,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 397, 688, 765?
Answer: HCF of 397, 688, 765 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 397, 688, 765 using Euclid's Algorithm?
Answer: For arbitrary numbers 397, 688, 765 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.