Highest Common Factor of 44, 423, 997, 926 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 44, 423, 997, 926 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 44, 423, 997, 926 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 44, 423, 997, 926 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 44, 423, 997, 926 is 1.

HCF(44, 423, 997, 926) = 1

HCF of 44, 423, 997, 926 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 44, 423, 997, 926 is 1.

Highest Common Factor of 44,423,997,926 using Euclid's algorithm

Highest Common Factor of 44,423,997,926 is 1

Step 1: Since 423 > 44, we apply the division lemma to 423 and 44, to get

423 = 44 x 9 + 27

Step 2: Since the reminder 44 ≠ 0, we apply division lemma to 27 and 44, to get

44 = 27 x 1 + 17

Step 3: We consider the new divisor 27 and the new remainder 17, and apply the division lemma to get

27 = 17 x 1 + 10

We consider the new divisor 17 and the new remainder 10,and apply the division lemma to get

17 = 10 x 1 + 7

We consider the new divisor 10 and the new remainder 7,and apply the division lemma to get

10 = 7 x 1 + 3

We consider the new divisor 7 and the new remainder 3,and apply the division lemma to get

7 = 3 x 2 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 44 and 423 is 1

Notice that 1 = HCF(3,1) = HCF(7,3) = HCF(10,7) = HCF(17,10) = HCF(27,17) = HCF(44,27) = HCF(423,44) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 997 > 1, we apply the division lemma to 997 and 1, to get

997 = 1 x 997 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 997 is 1

Notice that 1 = HCF(997,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 926 > 1, we apply the division lemma to 926 and 1, to get

926 = 1 x 926 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 926 is 1

Notice that 1 = HCF(926,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 44, 423, 997, 926 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 44, 423, 997, 926?

Answer: HCF of 44, 423, 997, 926 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 44, 423, 997, 926 using Euclid's Algorithm?

Answer: For arbitrary numbers 44, 423, 997, 926 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.