Highest Common Factor of 4567, 5906 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 4567, 5906 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 4567, 5906 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 4567, 5906 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 4567, 5906 is 1.

HCF(4567, 5906) = 1

HCF of 4567, 5906 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 4567, 5906 is 1.

Highest Common Factor of 4567,5906 using Euclid's algorithm

Highest Common Factor of 4567,5906 is 1

Step 1: Since 5906 > 4567, we apply the division lemma to 5906 and 4567, to get

5906 = 4567 x 1 + 1339

Step 2: Since the reminder 4567 ≠ 0, we apply division lemma to 1339 and 4567, to get

4567 = 1339 x 3 + 550

Step 3: We consider the new divisor 1339 and the new remainder 550, and apply the division lemma to get

1339 = 550 x 2 + 239

We consider the new divisor 550 and the new remainder 239,and apply the division lemma to get

550 = 239 x 2 + 72

We consider the new divisor 239 and the new remainder 72,and apply the division lemma to get

239 = 72 x 3 + 23

We consider the new divisor 72 and the new remainder 23,and apply the division lemma to get

72 = 23 x 3 + 3

We consider the new divisor 23 and the new remainder 3,and apply the division lemma to get

23 = 3 x 7 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 4567 and 5906 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(23,3) = HCF(72,23) = HCF(239,72) = HCF(550,239) = HCF(1339,550) = HCF(4567,1339) = HCF(5906,4567) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 4567, 5906 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 4567, 5906?

Answer: HCF of 4567, 5906 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 4567, 5906 using Euclid's Algorithm?

Answer: For arbitrary numbers 4567, 5906 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.