Highest Common Factor of 467, 641, 51, 199 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 467, 641, 51, 199 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 467, 641, 51, 199 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 467, 641, 51, 199 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 467, 641, 51, 199 is 1.

HCF(467, 641, 51, 199) = 1

HCF of 467, 641, 51, 199 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 467, 641, 51, 199 is 1.

Highest Common Factor of 467,641,51,199 using Euclid's algorithm

Highest Common Factor of 467,641,51,199 is 1

Step 1: Since 641 > 467, we apply the division lemma to 641 and 467, to get

641 = 467 x 1 + 174

Step 2: Since the reminder 467 ≠ 0, we apply division lemma to 174 and 467, to get

467 = 174 x 2 + 119

Step 3: We consider the new divisor 174 and the new remainder 119, and apply the division lemma to get

174 = 119 x 1 + 55

We consider the new divisor 119 and the new remainder 55,and apply the division lemma to get

119 = 55 x 2 + 9

We consider the new divisor 55 and the new remainder 9,and apply the division lemma to get

55 = 9 x 6 + 1

We consider the new divisor 9 and the new remainder 1,and apply the division lemma to get

9 = 1 x 9 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 467 and 641 is 1

Notice that 1 = HCF(9,1) = HCF(55,9) = HCF(119,55) = HCF(174,119) = HCF(467,174) = HCF(641,467) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 51 > 1, we apply the division lemma to 51 and 1, to get

51 = 1 x 51 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 51 is 1

Notice that 1 = HCF(51,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 199 > 1, we apply the division lemma to 199 and 1, to get

199 = 1 x 199 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 199 is 1

Notice that 1 = HCF(199,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 467, 641, 51, 199 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 467, 641, 51, 199?

Answer: HCF of 467, 641, 51, 199 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 467, 641, 51, 199 using Euclid's Algorithm?

Answer: For arbitrary numbers 467, 641, 51, 199 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.