Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 487, 47550 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 487, 47550 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 487, 47550 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 487, 47550 is 1.
HCF(487, 47550) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 487, 47550 is 1.
Step 1: Since 47550 > 487, we apply the division lemma to 47550 and 487, to get
47550 = 487 x 97 + 311
Step 2: Since the reminder 487 ≠ 0, we apply division lemma to 311 and 487, to get
487 = 311 x 1 + 176
Step 3: We consider the new divisor 311 and the new remainder 176, and apply the division lemma to get
311 = 176 x 1 + 135
We consider the new divisor 176 and the new remainder 135,and apply the division lemma to get
176 = 135 x 1 + 41
We consider the new divisor 135 and the new remainder 41,and apply the division lemma to get
135 = 41 x 3 + 12
We consider the new divisor 41 and the new remainder 12,and apply the division lemma to get
41 = 12 x 3 + 5
We consider the new divisor 12 and the new remainder 5,and apply the division lemma to get
12 = 5 x 2 + 2
We consider the new divisor 5 and the new remainder 2,and apply the division lemma to get
5 = 2 x 2 + 1
We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 487 and 47550 is 1
Notice that 1 = HCF(2,1) = HCF(5,2) = HCF(12,5) = HCF(41,12) = HCF(135,41) = HCF(176,135) = HCF(311,176) = HCF(487,311) = HCF(47550,487) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 487, 47550?
Answer: HCF of 487, 47550 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 487, 47550 using Euclid's Algorithm?
Answer: For arbitrary numbers 487, 47550 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.