Highest Common Factor of 499, 909, 421 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 499, 909, 421 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 499, 909, 421 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 499, 909, 421 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 499, 909, 421 is 1.

HCF(499, 909, 421) = 1

HCF of 499, 909, 421 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 499, 909, 421 is 1.

Highest Common Factor of 499,909,421 using Euclid's algorithm

Highest Common Factor of 499,909,421 is 1

Step 1: Since 909 > 499, we apply the division lemma to 909 and 499, to get

909 = 499 x 1 + 410

Step 2: Since the reminder 499 ≠ 0, we apply division lemma to 410 and 499, to get

499 = 410 x 1 + 89

Step 3: We consider the new divisor 410 and the new remainder 89, and apply the division lemma to get

410 = 89 x 4 + 54

We consider the new divisor 89 and the new remainder 54,and apply the division lemma to get

89 = 54 x 1 + 35

We consider the new divisor 54 and the new remainder 35,and apply the division lemma to get

54 = 35 x 1 + 19

We consider the new divisor 35 and the new remainder 19,and apply the division lemma to get

35 = 19 x 1 + 16

We consider the new divisor 19 and the new remainder 16,and apply the division lemma to get

19 = 16 x 1 + 3

We consider the new divisor 16 and the new remainder 3,and apply the division lemma to get

16 = 3 x 5 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 499 and 909 is 1

Notice that 1 = HCF(3,1) = HCF(16,3) = HCF(19,16) = HCF(35,19) = HCF(54,35) = HCF(89,54) = HCF(410,89) = HCF(499,410) = HCF(909,499) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 421 > 1, we apply the division lemma to 421 and 1, to get

421 = 1 x 421 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 421 is 1

Notice that 1 = HCF(421,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 499, 909, 421 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 499, 909, 421?

Answer: HCF of 499, 909, 421 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 499, 909, 421 using Euclid's Algorithm?

Answer: For arbitrary numbers 499, 909, 421 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.