Highest Common Factor of 5104, 6149 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 5104, 6149 i.e. 11 the largest integer that leaves a remainder zero for all numbers.

HCF of 5104, 6149 is 11 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 5104, 6149 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 5104, 6149 is 11.

HCF(5104, 6149) = 11

HCF of 5104, 6149 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 5104, 6149 is 11.

Highest Common Factor of 5104,6149 using Euclid's algorithm

Highest Common Factor of 5104,6149 is 11

Step 1: Since 6149 > 5104, we apply the division lemma to 6149 and 5104, to get

6149 = 5104 x 1 + 1045

Step 2: Since the reminder 5104 ≠ 0, we apply division lemma to 1045 and 5104, to get

5104 = 1045 x 4 + 924

Step 3: We consider the new divisor 1045 and the new remainder 924, and apply the division lemma to get

1045 = 924 x 1 + 121

We consider the new divisor 924 and the new remainder 121,and apply the division lemma to get

924 = 121 x 7 + 77

We consider the new divisor 121 and the new remainder 77,and apply the division lemma to get

121 = 77 x 1 + 44

We consider the new divisor 77 and the new remainder 44,and apply the division lemma to get

77 = 44 x 1 + 33

We consider the new divisor 44 and the new remainder 33,and apply the division lemma to get

44 = 33 x 1 + 11

We consider the new divisor 33 and the new remainder 11,and apply the division lemma to get

33 = 11 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 11, the HCF of 5104 and 6149 is 11

Notice that 11 = HCF(33,11) = HCF(44,33) = HCF(77,44) = HCF(121,77) = HCF(924,121) = HCF(1045,924) = HCF(5104,1045) = HCF(6149,5104) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 5104, 6149 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 5104, 6149?

Answer: HCF of 5104, 6149 is 11 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 5104, 6149 using Euclid's Algorithm?

Answer: For arbitrary numbers 5104, 6149 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.