Highest Common Factor of 522, 638, 601 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 522, 638, 601 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 522, 638, 601 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 522, 638, 601 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 522, 638, 601 is 1.

HCF(522, 638, 601) = 1

HCF of 522, 638, 601 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 522, 638, 601 is 1.

Highest Common Factor of 522,638,601 using Euclid's algorithm

Highest Common Factor of 522,638,601 is 1

Step 1: Since 638 > 522, we apply the division lemma to 638 and 522, to get

638 = 522 x 1 + 116

Step 2: Since the reminder 522 ≠ 0, we apply division lemma to 116 and 522, to get

522 = 116 x 4 + 58

Step 3: We consider the new divisor 116 and the new remainder 58, and apply the division lemma to get

116 = 58 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 58, the HCF of 522 and 638 is 58

Notice that 58 = HCF(116,58) = HCF(522,116) = HCF(638,522) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 601 > 58, we apply the division lemma to 601 and 58, to get

601 = 58 x 10 + 21

Step 2: Since the reminder 58 ≠ 0, we apply division lemma to 21 and 58, to get

58 = 21 x 2 + 16

Step 3: We consider the new divisor 21 and the new remainder 16, and apply the division lemma to get

21 = 16 x 1 + 5

We consider the new divisor 16 and the new remainder 5,and apply the division lemma to get

16 = 5 x 3 + 1

We consider the new divisor 5 and the new remainder 1,and apply the division lemma to get

5 = 1 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 58 and 601 is 1

Notice that 1 = HCF(5,1) = HCF(16,5) = HCF(21,16) = HCF(58,21) = HCF(601,58) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 522, 638, 601 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 522, 638, 601?

Answer: HCF of 522, 638, 601 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 522, 638, 601 using Euclid's Algorithm?

Answer: For arbitrary numbers 522, 638, 601 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.