Highest Common Factor of 526, 635, 99, 861 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 526, 635, 99, 861 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 526, 635, 99, 861 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 526, 635, 99, 861 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 526, 635, 99, 861 is 1.

HCF(526, 635, 99, 861) = 1

HCF of 526, 635, 99, 861 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 526, 635, 99, 861 is 1.

Highest Common Factor of 526,635,99,861 using Euclid's algorithm

Highest Common Factor of 526,635,99,861 is 1

Step 1: Since 635 > 526, we apply the division lemma to 635 and 526, to get

635 = 526 x 1 + 109

Step 2: Since the reminder 526 ≠ 0, we apply division lemma to 109 and 526, to get

526 = 109 x 4 + 90

Step 3: We consider the new divisor 109 and the new remainder 90, and apply the division lemma to get

109 = 90 x 1 + 19

We consider the new divisor 90 and the new remainder 19,and apply the division lemma to get

90 = 19 x 4 + 14

We consider the new divisor 19 and the new remainder 14,and apply the division lemma to get

19 = 14 x 1 + 5

We consider the new divisor 14 and the new remainder 5,and apply the division lemma to get

14 = 5 x 2 + 4

We consider the new divisor 5 and the new remainder 4,and apply the division lemma to get

5 = 4 x 1 + 1

We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 526 and 635 is 1

Notice that 1 = HCF(4,1) = HCF(5,4) = HCF(14,5) = HCF(19,14) = HCF(90,19) = HCF(109,90) = HCF(526,109) = HCF(635,526) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 99 > 1, we apply the division lemma to 99 and 1, to get

99 = 1 x 99 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 99 is 1

Notice that 1 = HCF(99,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 861 > 1, we apply the division lemma to 861 and 1, to get

861 = 1 x 861 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 861 is 1

Notice that 1 = HCF(861,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 526, 635, 99, 861 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 526, 635, 99, 861?

Answer: HCF of 526, 635, 99, 861 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 526, 635, 99, 861 using Euclid's Algorithm?

Answer: For arbitrary numbers 526, 635, 99, 861 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.