Highest Common Factor of 5458, 2559, 56121 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 5458, 2559, 56121 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 5458, 2559, 56121 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 5458, 2559, 56121 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 5458, 2559, 56121 is 1.

HCF(5458, 2559, 56121) = 1

HCF of 5458, 2559, 56121 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 5458, 2559, 56121 is 1.

Highest Common Factor of 5458,2559,56121 using Euclid's algorithm

Highest Common Factor of 5458,2559,56121 is 1

Step 1: Since 5458 > 2559, we apply the division lemma to 5458 and 2559, to get

5458 = 2559 x 2 + 340

Step 2: Since the reminder 2559 ≠ 0, we apply division lemma to 340 and 2559, to get

2559 = 340 x 7 + 179

Step 3: We consider the new divisor 340 and the new remainder 179, and apply the division lemma to get

340 = 179 x 1 + 161

We consider the new divisor 179 and the new remainder 161,and apply the division lemma to get

179 = 161 x 1 + 18

We consider the new divisor 161 and the new remainder 18,and apply the division lemma to get

161 = 18 x 8 + 17

We consider the new divisor 18 and the new remainder 17,and apply the division lemma to get

18 = 17 x 1 + 1

We consider the new divisor 17 and the new remainder 1,and apply the division lemma to get

17 = 1 x 17 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 5458 and 2559 is 1

Notice that 1 = HCF(17,1) = HCF(18,17) = HCF(161,18) = HCF(179,161) = HCF(340,179) = HCF(2559,340) = HCF(5458,2559) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 56121 > 1, we apply the division lemma to 56121 and 1, to get

56121 = 1 x 56121 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 56121 is 1

Notice that 1 = HCF(56121,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 5458, 2559, 56121 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 5458, 2559, 56121?

Answer: HCF of 5458, 2559, 56121 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 5458, 2559, 56121 using Euclid's Algorithm?

Answer: For arbitrary numbers 5458, 2559, 56121 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.