Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 5751, 3789 i.e. 9 the largest integer that leaves a remainder zero for all numbers.
HCF of 5751, 3789 is 9 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 5751, 3789 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 5751, 3789 is 9.
HCF(5751, 3789) = 9
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 5751, 3789 is 9.
Step 1: Since 5751 > 3789, we apply the division lemma to 5751 and 3789, to get
5751 = 3789 x 1 + 1962
Step 2: Since the reminder 3789 ≠ 0, we apply division lemma to 1962 and 3789, to get
3789 = 1962 x 1 + 1827
Step 3: We consider the new divisor 1962 and the new remainder 1827, and apply the division lemma to get
1962 = 1827 x 1 + 135
We consider the new divisor 1827 and the new remainder 135,and apply the division lemma to get
1827 = 135 x 13 + 72
We consider the new divisor 135 and the new remainder 72,and apply the division lemma to get
135 = 72 x 1 + 63
We consider the new divisor 72 and the new remainder 63,and apply the division lemma to get
72 = 63 x 1 + 9
We consider the new divisor 63 and the new remainder 9,and apply the division lemma to get
63 = 9 x 7 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 9, the HCF of 5751 and 3789 is 9
Notice that 9 = HCF(63,9) = HCF(72,63) = HCF(135,72) = HCF(1827,135) = HCF(1962,1827) = HCF(3789,1962) = HCF(5751,3789) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 5751, 3789?
Answer: HCF of 5751, 3789 is 9 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 5751, 3789 using Euclid's Algorithm?
Answer: For arbitrary numbers 5751, 3789 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.