Highest Common Factor of 578, 940 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 578, 940 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 578, 940 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 578, 940 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 578, 940 is 2.

HCF(578, 940) = 2

HCF of 578, 940 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 578, 940 is 2.

Highest Common Factor of 578,940 using Euclid's algorithm

Highest Common Factor of 578,940 is 2

Step 1: Since 940 > 578, we apply the division lemma to 940 and 578, to get

940 = 578 x 1 + 362

Step 2: Since the reminder 578 ≠ 0, we apply division lemma to 362 and 578, to get

578 = 362 x 1 + 216

Step 3: We consider the new divisor 362 and the new remainder 216, and apply the division lemma to get

362 = 216 x 1 + 146

We consider the new divisor 216 and the new remainder 146,and apply the division lemma to get

216 = 146 x 1 + 70

We consider the new divisor 146 and the new remainder 70,and apply the division lemma to get

146 = 70 x 2 + 6

We consider the new divisor 70 and the new remainder 6,and apply the division lemma to get

70 = 6 x 11 + 4

We consider the new divisor 6 and the new remainder 4,and apply the division lemma to get

6 = 4 x 1 + 2

We consider the new divisor 4 and the new remainder 2,and apply the division lemma to get

4 = 2 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 578 and 940 is 2

Notice that 2 = HCF(4,2) = HCF(6,4) = HCF(70,6) = HCF(146,70) = HCF(216,146) = HCF(362,216) = HCF(578,362) = HCF(940,578) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 578, 940 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 578, 940?

Answer: HCF of 578, 940 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 578, 940 using Euclid's Algorithm?

Answer: For arbitrary numbers 578, 940 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.