Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 5797, 5108 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 5797, 5108 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 5797, 5108 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 5797, 5108 is 1.
HCF(5797, 5108) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 5797, 5108 is 1.
Step 1: Since 5797 > 5108, we apply the division lemma to 5797 and 5108, to get
5797 = 5108 x 1 + 689
Step 2: Since the reminder 5108 ≠ 0, we apply division lemma to 689 and 5108, to get
5108 = 689 x 7 + 285
Step 3: We consider the new divisor 689 and the new remainder 285, and apply the division lemma to get
689 = 285 x 2 + 119
We consider the new divisor 285 and the new remainder 119,and apply the division lemma to get
285 = 119 x 2 + 47
We consider the new divisor 119 and the new remainder 47,and apply the division lemma to get
119 = 47 x 2 + 25
We consider the new divisor 47 and the new remainder 25,and apply the division lemma to get
47 = 25 x 1 + 22
We consider the new divisor 25 and the new remainder 22,and apply the division lemma to get
25 = 22 x 1 + 3
We consider the new divisor 22 and the new remainder 3,and apply the division lemma to get
22 = 3 x 7 + 1
We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get
3 = 1 x 3 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 5797 and 5108 is 1
Notice that 1 = HCF(3,1) = HCF(22,3) = HCF(25,22) = HCF(47,25) = HCF(119,47) = HCF(285,119) = HCF(689,285) = HCF(5108,689) = HCF(5797,5108) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 5797, 5108?
Answer: HCF of 5797, 5108 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 5797, 5108 using Euclid's Algorithm?
Answer: For arbitrary numbers 5797, 5108 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.