Highest Common Factor of 60, 552, 444, 203 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 60, 552, 444, 203 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 60, 552, 444, 203 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 60, 552, 444, 203 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 60, 552, 444, 203 is 1.

HCF(60, 552, 444, 203) = 1

HCF of 60, 552, 444, 203 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 60, 552, 444, 203 is 1.

Highest Common Factor of 60,552,444,203 using Euclid's algorithm

Highest Common Factor of 60,552,444,203 is 1

Step 1: Since 552 > 60, we apply the division lemma to 552 and 60, to get

552 = 60 x 9 + 12

Step 2: Since the reminder 60 ≠ 0, we apply division lemma to 12 and 60, to get

60 = 12 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 12, the HCF of 60 and 552 is 12

Notice that 12 = HCF(60,12) = HCF(552,60) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 444 > 12, we apply the division lemma to 444 and 12, to get

444 = 12 x 37 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 12, the HCF of 12 and 444 is 12

Notice that 12 = HCF(444,12) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 203 > 12, we apply the division lemma to 203 and 12, to get

203 = 12 x 16 + 11

Step 2: Since the reminder 12 ≠ 0, we apply division lemma to 11 and 12, to get

12 = 11 x 1 + 1

Step 3: We consider the new divisor 11 and the new remainder 1, and apply the division lemma to get

11 = 1 x 11 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 12 and 203 is 1

Notice that 1 = HCF(11,1) = HCF(12,11) = HCF(203,12) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 60, 552, 444, 203 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 60, 552, 444, 203?

Answer: HCF of 60, 552, 444, 203 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 60, 552, 444, 203 using Euclid's Algorithm?

Answer: For arbitrary numbers 60, 552, 444, 203 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.