Highest Common Factor of 6016, 9199 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 6016, 9199 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 6016, 9199 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 6016, 9199 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 6016, 9199 is 1.

HCF(6016, 9199) = 1

HCF of 6016, 9199 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 6016, 9199 is 1.

Highest Common Factor of 6016,9199 using Euclid's algorithm

Highest Common Factor of 6016,9199 is 1

Step 1: Since 9199 > 6016, we apply the division lemma to 9199 and 6016, to get

9199 = 6016 x 1 + 3183

Step 2: Since the reminder 6016 ≠ 0, we apply division lemma to 3183 and 6016, to get

6016 = 3183 x 1 + 2833

Step 3: We consider the new divisor 3183 and the new remainder 2833, and apply the division lemma to get

3183 = 2833 x 1 + 350

We consider the new divisor 2833 and the new remainder 350,and apply the division lemma to get

2833 = 350 x 8 + 33

We consider the new divisor 350 and the new remainder 33,and apply the division lemma to get

350 = 33 x 10 + 20

We consider the new divisor 33 and the new remainder 20,and apply the division lemma to get

33 = 20 x 1 + 13

We consider the new divisor 20 and the new remainder 13,and apply the division lemma to get

20 = 13 x 1 + 7

We consider the new divisor 13 and the new remainder 7,and apply the division lemma to get

13 = 7 x 1 + 6

We consider the new divisor 7 and the new remainder 6,and apply the division lemma to get

7 = 6 x 1 + 1

We consider the new divisor 6 and the new remainder 1,and apply the division lemma to get

6 = 1 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 6016 and 9199 is 1

Notice that 1 = HCF(6,1) = HCF(7,6) = HCF(13,7) = HCF(20,13) = HCF(33,20) = HCF(350,33) = HCF(2833,350) = HCF(3183,2833) = HCF(6016,3183) = HCF(9199,6016) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 6016, 9199 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 6016, 9199?

Answer: HCF of 6016, 9199 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 6016, 9199 using Euclid's Algorithm?

Answer: For arbitrary numbers 6016, 9199 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.