Highest Common Factor of 610, 477, 850 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 610, 477, 850 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 610, 477, 850 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 610, 477, 850 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 610, 477, 850 is 1.

HCF(610, 477, 850) = 1

HCF of 610, 477, 850 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 610, 477, 850 is 1.

Highest Common Factor of 610,477,850 using Euclid's algorithm

Highest Common Factor of 610,477,850 is 1

Step 1: Since 610 > 477, we apply the division lemma to 610 and 477, to get

610 = 477 x 1 + 133

Step 2: Since the reminder 477 ≠ 0, we apply division lemma to 133 and 477, to get

477 = 133 x 3 + 78

Step 3: We consider the new divisor 133 and the new remainder 78, and apply the division lemma to get

133 = 78 x 1 + 55

We consider the new divisor 78 and the new remainder 55,and apply the division lemma to get

78 = 55 x 1 + 23

We consider the new divisor 55 and the new remainder 23,and apply the division lemma to get

55 = 23 x 2 + 9

We consider the new divisor 23 and the new remainder 9,and apply the division lemma to get

23 = 9 x 2 + 5

We consider the new divisor 9 and the new remainder 5,and apply the division lemma to get

9 = 5 x 1 + 4

We consider the new divisor 5 and the new remainder 4,and apply the division lemma to get

5 = 4 x 1 + 1

We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 610 and 477 is 1

Notice that 1 = HCF(4,1) = HCF(5,4) = HCF(9,5) = HCF(23,9) = HCF(55,23) = HCF(78,55) = HCF(133,78) = HCF(477,133) = HCF(610,477) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 850 > 1, we apply the division lemma to 850 and 1, to get

850 = 1 x 850 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 850 is 1

Notice that 1 = HCF(850,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 610, 477, 850 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 610, 477, 850?

Answer: HCF of 610, 477, 850 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 610, 477, 850 using Euclid's Algorithm?

Answer: For arbitrary numbers 610, 477, 850 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.