Highest Common Factor of 617, 32457 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 617, 32457 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 617, 32457 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 617, 32457 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 617, 32457 is 1.

HCF(617, 32457) = 1

HCF of 617, 32457 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 617, 32457 is 1.

Highest Common Factor of 617,32457 using Euclid's algorithm

Highest Common Factor of 617,32457 is 1

Step 1: Since 32457 > 617, we apply the division lemma to 32457 and 617, to get

32457 = 617 x 52 + 373

Step 2: Since the reminder 617 ≠ 0, we apply division lemma to 373 and 617, to get

617 = 373 x 1 + 244

Step 3: We consider the new divisor 373 and the new remainder 244, and apply the division lemma to get

373 = 244 x 1 + 129

We consider the new divisor 244 and the new remainder 129,and apply the division lemma to get

244 = 129 x 1 + 115

We consider the new divisor 129 and the new remainder 115,and apply the division lemma to get

129 = 115 x 1 + 14

We consider the new divisor 115 and the new remainder 14,and apply the division lemma to get

115 = 14 x 8 + 3

We consider the new divisor 14 and the new remainder 3,and apply the division lemma to get

14 = 3 x 4 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 617 and 32457 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(14,3) = HCF(115,14) = HCF(129,115) = HCF(244,129) = HCF(373,244) = HCF(617,373) = HCF(32457,617) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 617, 32457 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 617, 32457?

Answer: HCF of 617, 32457 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 617, 32457 using Euclid's Algorithm?

Answer: For arbitrary numbers 617, 32457 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.