Highest Common Factor of 689, 332, 570, 85 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 689, 332, 570, 85 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 689, 332, 570, 85 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 689, 332, 570, 85 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 689, 332, 570, 85 is 1.

HCF(689, 332, 570, 85) = 1

HCF of 689, 332, 570, 85 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 689, 332, 570, 85 is 1.

Highest Common Factor of 689,332,570,85 using Euclid's algorithm

Highest Common Factor of 689,332,570,85 is 1

Step 1: Since 689 > 332, we apply the division lemma to 689 and 332, to get

689 = 332 x 2 + 25

Step 2: Since the reminder 332 ≠ 0, we apply division lemma to 25 and 332, to get

332 = 25 x 13 + 7

Step 3: We consider the new divisor 25 and the new remainder 7, and apply the division lemma to get

25 = 7 x 3 + 4

We consider the new divisor 7 and the new remainder 4,and apply the division lemma to get

7 = 4 x 1 + 3

We consider the new divisor 4 and the new remainder 3,and apply the division lemma to get

4 = 3 x 1 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 689 and 332 is 1

Notice that 1 = HCF(3,1) = HCF(4,3) = HCF(7,4) = HCF(25,7) = HCF(332,25) = HCF(689,332) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 570 > 1, we apply the division lemma to 570 and 1, to get

570 = 1 x 570 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 570 is 1

Notice that 1 = HCF(570,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 85 > 1, we apply the division lemma to 85 and 1, to get

85 = 1 x 85 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 85 is 1

Notice that 1 = HCF(85,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 689, 332, 570, 85 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 689, 332, 570, 85?

Answer: HCF of 689, 332, 570, 85 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 689, 332, 570, 85 using Euclid's Algorithm?

Answer: For arbitrary numbers 689, 332, 570, 85 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.