Highest Common Factor of 695, 9546 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 695, 9546 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 695, 9546 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 695, 9546 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 695, 9546 is 1.

HCF(695, 9546) = 1

HCF of 695, 9546 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 695, 9546 is 1.

Highest Common Factor of 695,9546 using Euclid's algorithm

Highest Common Factor of 695,9546 is 1

Step 1: Since 9546 > 695, we apply the division lemma to 9546 and 695, to get

9546 = 695 x 13 + 511

Step 2: Since the reminder 695 ≠ 0, we apply division lemma to 511 and 695, to get

695 = 511 x 1 + 184

Step 3: We consider the new divisor 511 and the new remainder 184, and apply the division lemma to get

511 = 184 x 2 + 143

We consider the new divisor 184 and the new remainder 143,and apply the division lemma to get

184 = 143 x 1 + 41

We consider the new divisor 143 and the new remainder 41,and apply the division lemma to get

143 = 41 x 3 + 20

We consider the new divisor 41 and the new remainder 20,and apply the division lemma to get

41 = 20 x 2 + 1

We consider the new divisor 20 and the new remainder 1,and apply the division lemma to get

20 = 1 x 20 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 695 and 9546 is 1

Notice that 1 = HCF(20,1) = HCF(41,20) = HCF(143,41) = HCF(184,143) = HCF(511,184) = HCF(695,511) = HCF(9546,695) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 695, 9546 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 695, 9546?

Answer: HCF of 695, 9546 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 695, 9546 using Euclid's Algorithm?

Answer: For arbitrary numbers 695, 9546 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.