Highest Common Factor of 703, 956, 129 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 703, 956, 129 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 703, 956, 129 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 703, 956, 129 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 703, 956, 129 is 1.

HCF(703, 956, 129) = 1

HCF of 703, 956, 129 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 703, 956, 129 is 1.

Highest Common Factor of 703,956,129 using Euclid's algorithm

Highest Common Factor of 703,956,129 is 1

Step 1: Since 956 > 703, we apply the division lemma to 956 and 703, to get

956 = 703 x 1 + 253

Step 2: Since the reminder 703 ≠ 0, we apply division lemma to 253 and 703, to get

703 = 253 x 2 + 197

Step 3: We consider the new divisor 253 and the new remainder 197, and apply the division lemma to get

253 = 197 x 1 + 56

We consider the new divisor 197 and the new remainder 56,and apply the division lemma to get

197 = 56 x 3 + 29

We consider the new divisor 56 and the new remainder 29,and apply the division lemma to get

56 = 29 x 1 + 27

We consider the new divisor 29 and the new remainder 27,and apply the division lemma to get

29 = 27 x 1 + 2

We consider the new divisor 27 and the new remainder 2,and apply the division lemma to get

27 = 2 x 13 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 703 and 956 is 1

Notice that 1 = HCF(2,1) = HCF(27,2) = HCF(29,27) = HCF(56,29) = HCF(197,56) = HCF(253,197) = HCF(703,253) = HCF(956,703) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 129 > 1, we apply the division lemma to 129 and 1, to get

129 = 1 x 129 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 129 is 1

Notice that 1 = HCF(129,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 703, 956, 129 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 703, 956, 129?

Answer: HCF of 703, 956, 129 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 703, 956, 129 using Euclid's Algorithm?

Answer: For arbitrary numbers 703, 956, 129 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.