Highest Common Factor of 752, 731, 531, 466 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 752, 731, 531, 466 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 752, 731, 531, 466 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 752, 731, 531, 466 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 752, 731, 531, 466 is 1.

HCF(752, 731, 531, 466) = 1

HCF of 752, 731, 531, 466 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 752, 731, 531, 466 is 1.

Highest Common Factor of 752,731,531,466 using Euclid's algorithm

Highest Common Factor of 752,731,531,466 is 1

Step 1: Since 752 > 731, we apply the division lemma to 752 and 731, to get

752 = 731 x 1 + 21

Step 2: Since the reminder 731 ≠ 0, we apply division lemma to 21 and 731, to get

731 = 21 x 34 + 17

Step 3: We consider the new divisor 21 and the new remainder 17, and apply the division lemma to get

21 = 17 x 1 + 4

We consider the new divisor 17 and the new remainder 4,and apply the division lemma to get

17 = 4 x 4 + 1

We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 752 and 731 is 1

Notice that 1 = HCF(4,1) = HCF(17,4) = HCF(21,17) = HCF(731,21) = HCF(752,731) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 531 > 1, we apply the division lemma to 531 and 1, to get

531 = 1 x 531 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 531 is 1

Notice that 1 = HCF(531,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 466 > 1, we apply the division lemma to 466 and 1, to get

466 = 1 x 466 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 466 is 1

Notice that 1 = HCF(466,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 752, 731, 531, 466 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 752, 731, 531, 466?

Answer: HCF of 752, 731, 531, 466 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 752, 731, 531, 466 using Euclid's Algorithm?

Answer: For arbitrary numbers 752, 731, 531, 466 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.