Highest Common Factor of 756, 549 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 756, 549 i.e. 9 the largest integer that leaves a remainder zero for all numbers.

HCF of 756, 549 is 9 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 756, 549 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 756, 549 is 9.

HCF(756, 549) = 9

HCF of 756, 549 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 756, 549 is 9.

Highest Common Factor of 756,549 using Euclid's algorithm

Highest Common Factor of 756,549 is 9

Step 1: Since 756 > 549, we apply the division lemma to 756 and 549, to get

756 = 549 x 1 + 207

Step 2: Since the reminder 549 ≠ 0, we apply division lemma to 207 and 549, to get

549 = 207 x 2 + 135

Step 3: We consider the new divisor 207 and the new remainder 135, and apply the division lemma to get

207 = 135 x 1 + 72

We consider the new divisor 135 and the new remainder 72,and apply the division lemma to get

135 = 72 x 1 + 63

We consider the new divisor 72 and the new remainder 63,and apply the division lemma to get

72 = 63 x 1 + 9

We consider the new divisor 63 and the new remainder 9,and apply the division lemma to get

63 = 9 x 7 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 9, the HCF of 756 and 549 is 9

Notice that 9 = HCF(63,9) = HCF(72,63) = HCF(135,72) = HCF(207,135) = HCF(549,207) = HCF(756,549) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 756, 549 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 756, 549?

Answer: HCF of 756, 549 is 9 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 756, 549 using Euclid's Algorithm?

Answer: For arbitrary numbers 756, 549 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.