Euclid's Division Lemma Prime Factorisation Calculator Factors of a Number Calculator LCM Calculator GCF Calculator Factor Tree Calculator LCM of Decimals LCM of Fractions GCF of Decimals GCF of Fractions

Highest Common Factor of 76, 80, 88, 125 using Euclid's algorithm

HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 76, 80, 88, 125 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 76, 80, 88, 125 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 76, 80, 88, 125 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 76, 80, 88, 125 is 1.

HCF(76, 80, 88, 125) = 1

HCF of 76, 80, 88, 125 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 76, 80, 88, 125 is 1.

Highest Common Factor of 76,80,88,125 using Euclid's algorithm

Step 1: Since 80 > 76, we apply the division lemma to 80 and 76, to get

80 = 76 x 1 + 4

Step 2: Since the reminder 76 ≠ 0, we apply division lemma to 4 and 76, to get

76 = 4 x 19 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 4, the HCF of 76 and 80 is 4

Notice that 4 = HCF(76,4) = HCF(80,76) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 88 > 4, we apply the division lemma to 88 and 4, to get

88 = 4 x 22 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 4, the HCF of 4 and 88 is 4

Notice that 4 = HCF(88,4) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 125 > 4, we apply the division lemma to 125 and 4, to get

125 = 4 x 31 + 1

Step 2: Since the reminder 4 ≠ 0, we apply division lemma to 1 and 4, to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 4 and 125 is 1

Notice that 1 = HCF(4,1) = HCF(125,4) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 76, 80, 88, 125 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 76, 80, 88, 125?

Answer: HCF of 76, 80, 88, 125 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 76, 80, 88, 125 using Euclid's Algorithm?

Answer: For arbitrary numbers 76, 80, 88, 125 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.