Highest Common Factor of 765, 466, 826 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 765, 466, 826 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 765, 466, 826 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 765, 466, 826 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 765, 466, 826 is 1.

HCF(765, 466, 826) = 1

HCF of 765, 466, 826 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 765, 466, 826 is 1.

Highest Common Factor of 765,466,826 using Euclid's algorithm

Highest Common Factor of 765,466,826 is 1

Step 1: Since 765 > 466, we apply the division lemma to 765 and 466, to get

765 = 466 x 1 + 299

Step 2: Since the reminder 466 ≠ 0, we apply division lemma to 299 and 466, to get

466 = 299 x 1 + 167

Step 3: We consider the new divisor 299 and the new remainder 167, and apply the division lemma to get

299 = 167 x 1 + 132

We consider the new divisor 167 and the new remainder 132,and apply the division lemma to get

167 = 132 x 1 + 35

We consider the new divisor 132 and the new remainder 35,and apply the division lemma to get

132 = 35 x 3 + 27

We consider the new divisor 35 and the new remainder 27,and apply the division lemma to get

35 = 27 x 1 + 8

We consider the new divisor 27 and the new remainder 8,and apply the division lemma to get

27 = 8 x 3 + 3

We consider the new divisor 8 and the new remainder 3,and apply the division lemma to get

8 = 3 x 2 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 765 and 466 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(8,3) = HCF(27,8) = HCF(35,27) = HCF(132,35) = HCF(167,132) = HCF(299,167) = HCF(466,299) = HCF(765,466) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 826 > 1, we apply the division lemma to 826 and 1, to get

826 = 1 x 826 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 826 is 1

Notice that 1 = HCF(826,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 765, 466, 826 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 765, 466, 826?

Answer: HCF of 765, 466, 826 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 765, 466, 826 using Euclid's Algorithm?

Answer: For arbitrary numbers 765, 466, 826 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.