Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 7657, 8333 i.e. 13 the largest integer that leaves a remainder zero for all numbers.
HCF of 7657, 8333 is 13 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 7657, 8333 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 7657, 8333 is 13.
HCF(7657, 8333) = 13
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 7657, 8333 is 13.
Step 1: Since 8333 > 7657, we apply the division lemma to 8333 and 7657, to get
8333 = 7657 x 1 + 676
Step 2: Since the reminder 7657 ≠ 0, we apply division lemma to 676 and 7657, to get
7657 = 676 x 11 + 221
Step 3: We consider the new divisor 676 and the new remainder 221, and apply the division lemma to get
676 = 221 x 3 + 13
We consider the new divisor 221 and the new remainder 13, and apply the division lemma to get
221 = 13 x 17 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 13, the HCF of 7657 and 8333 is 13
Notice that 13 = HCF(221,13) = HCF(676,221) = HCF(7657,676) = HCF(8333,7657) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 7657, 8333?
Answer: HCF of 7657, 8333 is 13 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 7657, 8333 using Euclid's Algorithm?
Answer: For arbitrary numbers 7657, 8333 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.