Highest Common Factor of 814, 513, 791 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 814, 513, 791 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 814, 513, 791 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 814, 513, 791 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 814, 513, 791 is 1.

HCF(814, 513, 791) = 1

HCF of 814, 513, 791 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 814, 513, 791 is 1.

Highest Common Factor of 814,513,791 using Euclid's algorithm

Highest Common Factor of 814,513,791 is 1

Step 1: Since 814 > 513, we apply the division lemma to 814 and 513, to get

814 = 513 x 1 + 301

Step 2: Since the reminder 513 ≠ 0, we apply division lemma to 301 and 513, to get

513 = 301 x 1 + 212

Step 3: We consider the new divisor 301 and the new remainder 212, and apply the division lemma to get

301 = 212 x 1 + 89

We consider the new divisor 212 and the new remainder 89,and apply the division lemma to get

212 = 89 x 2 + 34

We consider the new divisor 89 and the new remainder 34,and apply the division lemma to get

89 = 34 x 2 + 21

We consider the new divisor 34 and the new remainder 21,and apply the division lemma to get

34 = 21 x 1 + 13

We consider the new divisor 21 and the new remainder 13,and apply the division lemma to get

21 = 13 x 1 + 8

We consider the new divisor 13 and the new remainder 8,and apply the division lemma to get

13 = 8 x 1 + 5

We consider the new divisor 8 and the new remainder 5,and apply the division lemma to get

8 = 5 x 1 + 3

We consider the new divisor 5 and the new remainder 3,and apply the division lemma to get

5 = 3 x 1 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 814 and 513 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(5,3) = HCF(8,5) = HCF(13,8) = HCF(21,13) = HCF(34,21) = HCF(89,34) = HCF(212,89) = HCF(301,212) = HCF(513,301) = HCF(814,513) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 791 > 1, we apply the division lemma to 791 and 1, to get

791 = 1 x 791 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 791 is 1

Notice that 1 = HCF(791,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 814, 513, 791 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 814, 513, 791?

Answer: HCF of 814, 513, 791 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 814, 513, 791 using Euclid's Algorithm?

Answer: For arbitrary numbers 814, 513, 791 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.