Highest Common Factor of 841, 7360 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 841, 7360 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 841, 7360 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 841, 7360 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 841, 7360 is 1.

HCF(841, 7360) = 1

HCF of 841, 7360 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 841, 7360 is 1.

Highest Common Factor of 841,7360 using Euclid's algorithm

Highest Common Factor of 841,7360 is 1

Step 1: Since 7360 > 841, we apply the division lemma to 7360 and 841, to get

7360 = 841 x 8 + 632

Step 2: Since the reminder 841 ≠ 0, we apply division lemma to 632 and 841, to get

841 = 632 x 1 + 209

Step 3: We consider the new divisor 632 and the new remainder 209, and apply the division lemma to get

632 = 209 x 3 + 5

We consider the new divisor 209 and the new remainder 5,and apply the division lemma to get

209 = 5 x 41 + 4

We consider the new divisor 5 and the new remainder 4,and apply the division lemma to get

5 = 4 x 1 + 1

We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 841 and 7360 is 1

Notice that 1 = HCF(4,1) = HCF(5,4) = HCF(209,5) = HCF(632,209) = HCF(841,632) = HCF(7360,841) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 841, 7360 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 841, 7360?

Answer: HCF of 841, 7360 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 841, 7360 using Euclid's Algorithm?

Answer: For arbitrary numbers 841, 7360 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.