Highest Common Factor of 8583, 9961 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 8583, 9961 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 8583, 9961 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 8583, 9961 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 8583, 9961 is 1.

HCF(8583, 9961) = 1

HCF of 8583, 9961 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 8583, 9961 is 1.

Highest Common Factor of 8583,9961 using Euclid's algorithm

Highest Common Factor of 8583,9961 is 1

Step 1: Since 9961 > 8583, we apply the division lemma to 9961 and 8583, to get

9961 = 8583 x 1 + 1378

Step 2: Since the reminder 8583 ≠ 0, we apply division lemma to 1378 and 8583, to get

8583 = 1378 x 6 + 315

Step 3: We consider the new divisor 1378 and the new remainder 315, and apply the division lemma to get

1378 = 315 x 4 + 118

We consider the new divisor 315 and the new remainder 118,and apply the division lemma to get

315 = 118 x 2 + 79

We consider the new divisor 118 and the new remainder 79,and apply the division lemma to get

118 = 79 x 1 + 39

We consider the new divisor 79 and the new remainder 39,and apply the division lemma to get

79 = 39 x 2 + 1

We consider the new divisor 39 and the new remainder 1,and apply the division lemma to get

39 = 1 x 39 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 8583 and 9961 is 1

Notice that 1 = HCF(39,1) = HCF(79,39) = HCF(118,79) = HCF(315,118) = HCF(1378,315) = HCF(8583,1378) = HCF(9961,8583) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 8583, 9961 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 8583, 9961?

Answer: HCF of 8583, 9961 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 8583, 9961 using Euclid's Algorithm?

Answer: For arbitrary numbers 8583, 9961 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.