Highest Common Factor of 873, 504, 821 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 873, 504, 821 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 873, 504, 821 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 873, 504, 821 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 873, 504, 821 is 1.

HCF(873, 504, 821) = 1

HCF of 873, 504, 821 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 873, 504, 821 is 1.

Highest Common Factor of 873,504,821 using Euclid's algorithm

Highest Common Factor of 873,504,821 is 1

Step 1: Since 873 > 504, we apply the division lemma to 873 and 504, to get

873 = 504 x 1 + 369

Step 2: Since the reminder 504 ≠ 0, we apply division lemma to 369 and 504, to get

504 = 369 x 1 + 135

Step 3: We consider the new divisor 369 and the new remainder 135, and apply the division lemma to get

369 = 135 x 2 + 99

We consider the new divisor 135 and the new remainder 99,and apply the division lemma to get

135 = 99 x 1 + 36

We consider the new divisor 99 and the new remainder 36,and apply the division lemma to get

99 = 36 x 2 + 27

We consider the new divisor 36 and the new remainder 27,and apply the division lemma to get

36 = 27 x 1 + 9

We consider the new divisor 27 and the new remainder 9,and apply the division lemma to get

27 = 9 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 9, the HCF of 873 and 504 is 9

Notice that 9 = HCF(27,9) = HCF(36,27) = HCF(99,36) = HCF(135,99) = HCF(369,135) = HCF(504,369) = HCF(873,504) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 821 > 9, we apply the division lemma to 821 and 9, to get

821 = 9 x 91 + 2

Step 2: Since the reminder 9 ≠ 0, we apply division lemma to 2 and 9, to get

9 = 2 x 4 + 1

Step 3: We consider the new divisor 2 and the new remainder 1, and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 9 and 821 is 1

Notice that 1 = HCF(2,1) = HCF(9,2) = HCF(821,9) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 873, 504, 821 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 873, 504, 821?

Answer: HCF of 873, 504, 821 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 873, 504, 821 using Euclid's Algorithm?

Answer: For arbitrary numbers 873, 504, 821 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.