Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 878, 493, 758 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 878, 493, 758 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 878, 493, 758 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 878, 493, 758 is 1.
HCF(878, 493, 758) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 878, 493, 758 is 1.
Step 1: Since 878 > 493, we apply the division lemma to 878 and 493, to get
878 = 493 x 1 + 385
Step 2: Since the reminder 493 ≠ 0, we apply division lemma to 385 and 493, to get
493 = 385 x 1 + 108
Step 3: We consider the new divisor 385 and the new remainder 108, and apply the division lemma to get
385 = 108 x 3 + 61
We consider the new divisor 108 and the new remainder 61,and apply the division lemma to get
108 = 61 x 1 + 47
We consider the new divisor 61 and the new remainder 47,and apply the division lemma to get
61 = 47 x 1 + 14
We consider the new divisor 47 and the new remainder 14,and apply the division lemma to get
47 = 14 x 3 + 5
We consider the new divisor 14 and the new remainder 5,and apply the division lemma to get
14 = 5 x 2 + 4
We consider the new divisor 5 and the new remainder 4,and apply the division lemma to get
5 = 4 x 1 + 1
We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get
4 = 1 x 4 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 878 and 493 is 1
Notice that 1 = HCF(4,1) = HCF(5,4) = HCF(14,5) = HCF(47,14) = HCF(61,47) = HCF(108,61) = HCF(385,108) = HCF(493,385) = HCF(878,493) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 758 > 1, we apply the division lemma to 758 and 1, to get
758 = 1 x 758 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 758 is 1
Notice that 1 = HCF(758,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 878, 493, 758?
Answer: HCF of 878, 493, 758 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 878, 493, 758 using Euclid's Algorithm?
Answer: For arbitrary numbers 878, 493, 758 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.