Highest Common Factor of 896, 251, 87, 484 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 896, 251, 87, 484 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 896, 251, 87, 484 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 896, 251, 87, 484 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 896, 251, 87, 484 is 1.

HCF(896, 251, 87, 484) = 1

HCF of 896, 251, 87, 484 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 896, 251, 87, 484 is 1.

Highest Common Factor of 896,251,87,484 using Euclid's algorithm

Highest Common Factor of 896,251,87,484 is 1

Step 1: Since 896 > 251, we apply the division lemma to 896 and 251, to get

896 = 251 x 3 + 143

Step 2: Since the reminder 251 ≠ 0, we apply division lemma to 143 and 251, to get

251 = 143 x 1 + 108

Step 3: We consider the new divisor 143 and the new remainder 108, and apply the division lemma to get

143 = 108 x 1 + 35

We consider the new divisor 108 and the new remainder 35,and apply the division lemma to get

108 = 35 x 3 + 3

We consider the new divisor 35 and the new remainder 3,and apply the division lemma to get

35 = 3 x 11 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 896 and 251 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(35,3) = HCF(108,35) = HCF(143,108) = HCF(251,143) = HCF(896,251) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 87 > 1, we apply the division lemma to 87 and 1, to get

87 = 1 x 87 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 87 is 1

Notice that 1 = HCF(87,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 484 > 1, we apply the division lemma to 484 and 1, to get

484 = 1 x 484 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 484 is 1

Notice that 1 = HCF(484,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 896, 251, 87, 484 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 896, 251, 87, 484?

Answer: HCF of 896, 251, 87, 484 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 896, 251, 87, 484 using Euclid's Algorithm?

Answer: For arbitrary numbers 896, 251, 87, 484 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.