Highest Common Factor of 910, 664, 142, 600 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 910, 664, 142, 600 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 910, 664, 142, 600 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 910, 664, 142, 600 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 910, 664, 142, 600 is 2.

HCF(910, 664, 142, 600) = 2

HCF of 910, 664, 142, 600 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 910, 664, 142, 600 is 2.

Highest Common Factor of 910,664,142,600 using Euclid's algorithm

Highest Common Factor of 910,664,142,600 is 2

Step 1: Since 910 > 664, we apply the division lemma to 910 and 664, to get

910 = 664 x 1 + 246

Step 2: Since the reminder 664 ≠ 0, we apply division lemma to 246 and 664, to get

664 = 246 x 2 + 172

Step 3: We consider the new divisor 246 and the new remainder 172, and apply the division lemma to get

246 = 172 x 1 + 74

We consider the new divisor 172 and the new remainder 74,and apply the division lemma to get

172 = 74 x 2 + 24

We consider the new divisor 74 and the new remainder 24,and apply the division lemma to get

74 = 24 x 3 + 2

We consider the new divisor 24 and the new remainder 2,and apply the division lemma to get

24 = 2 x 12 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 910 and 664 is 2

Notice that 2 = HCF(24,2) = HCF(74,24) = HCF(172,74) = HCF(246,172) = HCF(664,246) = HCF(910,664) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 142 > 2, we apply the division lemma to 142 and 2, to get

142 = 2 x 71 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 2 and 142 is 2

Notice that 2 = HCF(142,2) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 600 > 2, we apply the division lemma to 600 and 2, to get

600 = 2 x 300 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 2 and 600 is 2

Notice that 2 = HCF(600,2) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 910, 664, 142, 600 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 910, 664, 142, 600?

Answer: HCF of 910, 664, 142, 600 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 910, 664, 142, 600 using Euclid's Algorithm?

Answer: For arbitrary numbers 910, 664, 142, 600 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.