Highest Common Factor of 919, 753 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 919, 753 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 919, 753 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 919, 753 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 919, 753 is 1.

HCF(919, 753) = 1

HCF of 919, 753 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 919, 753 is 1.

Highest Common Factor of 919,753 using Euclid's algorithm

Highest Common Factor of 919,753 is 1

Step 1: Since 919 > 753, we apply the division lemma to 919 and 753, to get

919 = 753 x 1 + 166

Step 2: Since the reminder 753 ≠ 0, we apply division lemma to 166 and 753, to get

753 = 166 x 4 + 89

Step 3: We consider the new divisor 166 and the new remainder 89, and apply the division lemma to get

166 = 89 x 1 + 77

We consider the new divisor 89 and the new remainder 77,and apply the division lemma to get

89 = 77 x 1 + 12

We consider the new divisor 77 and the new remainder 12,and apply the division lemma to get

77 = 12 x 6 + 5

We consider the new divisor 12 and the new remainder 5,and apply the division lemma to get

12 = 5 x 2 + 2

We consider the new divisor 5 and the new remainder 2,and apply the division lemma to get

5 = 2 x 2 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 919 and 753 is 1

Notice that 1 = HCF(2,1) = HCF(5,2) = HCF(12,5) = HCF(77,12) = HCF(89,77) = HCF(166,89) = HCF(753,166) = HCF(919,753) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 919, 753 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 919, 753?

Answer: HCF of 919, 753 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 919, 753 using Euclid's Algorithm?

Answer: For arbitrary numbers 919, 753 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.