Highest Common Factor of 994, 385, 639 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 994, 385, 639 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 994, 385, 639 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 994, 385, 639 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 994, 385, 639 is 1.

HCF(994, 385, 639) = 1

HCF of 994, 385, 639 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 994, 385, 639 is 1.

Highest Common Factor of 994,385,639 using Euclid's algorithm

Highest Common Factor of 994,385,639 is 1

Step 1: Since 994 > 385, we apply the division lemma to 994 and 385, to get

994 = 385 x 2 + 224

Step 2: Since the reminder 385 ≠ 0, we apply division lemma to 224 and 385, to get

385 = 224 x 1 + 161

Step 3: We consider the new divisor 224 and the new remainder 161, and apply the division lemma to get

224 = 161 x 1 + 63

We consider the new divisor 161 and the new remainder 63,and apply the division lemma to get

161 = 63 x 2 + 35

We consider the new divisor 63 and the new remainder 35,and apply the division lemma to get

63 = 35 x 1 + 28

We consider the new divisor 35 and the new remainder 28,and apply the division lemma to get

35 = 28 x 1 + 7

We consider the new divisor 28 and the new remainder 7,and apply the division lemma to get

28 = 7 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 7, the HCF of 994 and 385 is 7

Notice that 7 = HCF(28,7) = HCF(35,28) = HCF(63,35) = HCF(161,63) = HCF(224,161) = HCF(385,224) = HCF(994,385) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 639 > 7, we apply the division lemma to 639 and 7, to get

639 = 7 x 91 + 2

Step 2: Since the reminder 7 ≠ 0, we apply division lemma to 2 and 7, to get

7 = 2 x 3 + 1

Step 3: We consider the new divisor 2 and the new remainder 1, and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 7 and 639 is 1

Notice that 1 = HCF(2,1) = HCF(7,2) = HCF(639,7) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 994, 385, 639 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 994, 385, 639?

Answer: HCF of 994, 385, 639 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 994, 385, 639 using Euclid's Algorithm?

Answer: For arbitrary numbers 994, 385, 639 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.