Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
Free LCM Calculator determines the least common multiple (LCM) between 310430 and 310433 the smallest integer that is 96367716190 that is divisible by both numbers.
Least Common Multiple (LCM) of 310430 and 310433 is 96367716190.
LCM(310430,310433) = 96367716190
Least common multiple or lowest common denominator (LCD) can be calculated in three ways;
Least common multiple can be found by multiplying the highest exponent prime factors of 310430 and 310433. First we will calculate the prime factors of 310430 and 310433.
Prime Factorization of 310430
2 | 310430 |
5 | 155215 |
37 | 31043 |
839 | 839 |
1 |
Prime factors of 310430 are 2, 5, 37,839. Prime factorization of 310430 in exponential form is:
310430 = 21×51×371×8391
Prime Factorization of 310433
310433 | 310433 |
1 |
Prime factors of 310433 are 310433. Prime factorization of 310433 in exponential form is:
310433 = 3104331
Now multiplying the highest exponent prime factors to calculate the LCM of 310430 and 310433.
LCM(310430,310433) = 21×51×371×8391×3104331
LCM(310430,310433) = 96367716190
Factors of 310430
List of positive integer factors of 310430 that divides 310430 without a remainder.
1, 2, 5, 10, 37, 74, 185, 370, 839, 1678, 4195, 8390, 31043, 62086, 155215, 310430
Factors of 310433
List of positive integer factors of 310433 that divides 310433 without a remainder.
1, 310433
The formula of LCM is LCM(a,b) = ( a × b) / GCF(a,b).
We need to calculate greatest common factor 310430 and 310433, than apply into the LCM equation.
GCF(310430,310433) = 1
LCM(310430,310433) = ( 310430 × 310433) / 1
LCM(310430,310433) = 96367716190 / 1
LCM(310430,310433) = 96367716190
(i) The LCM of 310433 and 310430 is associative
LCM of 310430 and 310433 = LCM of 310433 and 310430
1. What is the LCM of 310430 and 310433?
Answer: LCM of 310430 and 310433 is 96367716190.
2. What are the Factors of 310430?
Answer: Factors of 310430 are 1, 2, 5, 10, 37, 74, 185, 370, 839, 1678, 4195, 8390, 31043, 62086, 155215, 310430. There are 16 integers that are factors of 310430. The greatest factor of 310430 is 310430.
3. What are the Factors of 310433?
Answer: Factors of 310433 are 1, 310433. There are 2 integers that are factors of 310433. The greatest factor of 310433 is 310433.
4. How to Find the LCM of 310430 and 310433?
Answer:
Least Common Multiple of 310430 and 310433 = 96367716190
Step 1: Find the prime factorization of 310430
310430 = 2 x 5 x 37 x 839
Step 2: Find the prime factorization of 310433
310433 = 310433
Step 3: Multiply each factor the greater number of times it occurs in steps i) or ii) above to find the lcm:
LCM = 96367716190 = 2 x 5 x 37 x 839 x 310433
Step 4: Therefore, the least common multiple of 310430 and 310433 is 96367716190.