Least Common Multiple of 315425 and 315431

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


Free LCM Calculator determines the least common multiple (LCM) between 315425 and 315431 the smallest integer that is 99494823175 that is divisible by both numbers.

Least Common Multiple (LCM) of 315425 and 315431 is 99494823175.

LCM(315425,315431) = 99494823175

LCM of 315425 and 315431

Least common multiple or lowest common denominator (LCD) can be calculated in three ways;

LCM of:
and

Least Common Multiple of 315425 and 315431

LCM of 315425 and 315431 is 99494823175

Least common multiple can be found by multiplying the highest exponent prime factors of 315425 and 315431. First we will calculate the prime factors of 315425 and 315431.

Prime Factorization of 315425


5 315425
5 63085
11 12617
31 1147
37 37
1

Prime factors of 315425 are 5, 11, 31,37. Prime factorization of 315425 in exponential form is:

315425 = 52×111×311×371

Prime Factorization of 315431


61 315431
5171 5171
1

Prime factors of 315431 are 61,5171. Prime factorization of 315431 in exponential form is:

315431 = 611×51711

Now multiplying the highest exponent prime factors to calculate the LCM of 315425 and 315431.

LCM(315425,315431) = 52×111×311×371×611×51711
LCM(315425,315431) = 99494823175

Factors of 315425

List of positive integer factors of 315425 that divides 315425 without a remainder.

1, 5, 11, 25, 31, 37, 55, 155, 185, 275, 341, 407, 775, 925, 1147, 1705, 2035, 5735, 8525, 10175, 12617, 28675, 63085, 315425

Factors of 315431

List of positive integer factors of 315431 that divides 315431 without a remainder.

1, 61, 5171, 315431

Least Common Multiple of 315425 and 315431 with GCF Formula

The formula of LCM is LCM(a,b) = ( a × b) / GCF(a,b).
We need to calculate greatest common factor 315425 and 315431, than apply into the LCM equation.

GCF(315425,315431) = 1
LCM(315425,315431) = ( 315425 × 315431) / 1
LCM(315425,315431) = 99494823175 / 1
LCM(315425,315431) = 99494823175

Properties of LCM 315425 and 315431

(i) The LCM of 315431 and 315425 is associative

LCM of 315425 and 315431 = LCM of 315431 and 315425

Frequently Asked Questions on LCM of 315425 and 315431

1. What is the LCM of 315425 and 315431?

Answer: LCM of 315425 and 315431 is 99494823175.

2. What are the Factors of 315425?

Answer: Factors of 315425 are 1, 5, 11, 25, 31, 37, 55, 155, 185, 275, 341, 407, 775, 925, 1147, 1705, 2035, 5735, 8525, 10175, 12617, 28675, 63085, 315425. There are 24 integers that are factors of 315425. The greatest factor of 315425 is 315425.

3. What are the Factors of 315431?

Answer: Factors of 315431 are 1, 61, 5171, 315431. There are 4 integers that are factors of 315431. The greatest factor of 315431 is 315431.

4. How to Find the LCM of 315425 and 315431?

Answer:

Least Common Multiple of 315425 and 315431 = 99494823175

Step 1: Find the prime factorization of 315425

315425 = 5 x 5 x 11 x 31 x 37

Step 2: Find the prime factorization of 315431

315431 = 61 x 5171

Step 3: Multiply each factor the greater number of times it occurs in steps i) or ii) above to find the lcm:

LCM = 99494823175 = 5 x 5 x 11 x 31 x 37 x 61 x 5171

Step 4: Therefore, the least common multiple of 315425 and 315431 is 99494823175.