Use the LCM of two or more numbers Calculator to find the Least Common Multiple of numbers 9, 15, 27, 33 i.e. 1485 smallest integer divisible by all numbers.

Least common multiple (LCM) of 9, 15, 27, 33 is **1485**.

LCM(9, 15, 27, 33) = 1485

*Least common multiple* or lowest common denominator (lcd) can be calculated in three ways

- Least Common Multiple of 9, 15, 27, 33 by common division method
- Least Common Multiple of 9, 15, 27, 33 with GCF Formula

3 | 9, 15, 27, 33 |

3 | 3, 5, 9, 11 |

1, 5, 3, 11 |

∴ So the LCM of the given numbers is 3 x 3 x 1 x 5 x 3 x 11 = 1485

The formula of **LCM** is LCM(a_{1},a_{2},a_{3}....,a_{n}) = ( a_{1} × a_{2} × a_{3} × .... × a_{n}) / GCF(a_{1},a_{2},a_{3}....,a_{n}) x common factors(if more than 2 numbers have common factors).

We need to calculate greatest common factor of 9,15,27,33 and common factors if more than two numbers have common factor, than apply into the LCM equation.

GCF(9,15,27,33) = 3

common factors(in case of two or more numbers have common factors) = 27

GCF(9,15,27,33) x common factors =3 x 27 = 81

LCM(9,15,27,33) = ( 9 × 15 × 27 × 33 ) / 81

LCM(9,15,27,33) = 120285 / 81

LCM(9,15,27,33) = 1485

∴ Least Common Multiple of 9,15,27,33 is 1485

Here are some samples of LCM of two or more Numbers calculations.

1. What is the LCM of 9, 15, 27, 33?

Answer: LCM of 9, 15, 27, 33 is 1485.

2. What are the Factors of 1485?

Answer: Factors of 1485 are . There are integers that are factors of 1485

3. How to Find the LCM of 9, 15, 27, 33 ?

Least Common Multiple of 9, 15, 27, 33.

Step 1: Divide all the numbers with common prime numbers having remainder zero.

Step 2: Then multiply all the prime factors with last row quotient of common division that is LCM(9, 15, 27, 33) = 3 x 3 x 3 x 5 x 11 = 1485.