Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
Make use of GCD Calculator to determine the Greatest Common Divisor of 15, 874, 825, 628 i.e. 1 largest integer that divides all the numbers equally.
GCD of 15, 874, 825, 628 is 1
GCD(15, 874, 825, 628) = 1
Ex: 10, 15, 20 (or) 24, 48, 96,45 (or) 78902, 89765, 12345
GCD of numbers 15, 874, 825, 628 is 1
GCD(15, 874, 825, 628) = 1
Given Input numbers are 15, 874, 825, 628
To find the GCD of numbers using factoring list out all the divisors of each number
Divisors of 15
List of positive integer divisors of 15 that divides 15 without a remainder.
1, 3, 5, 15
Divisors of 874
List of positive integer divisors of 874 that divides 874 without a remainder.
1, 2, 19, 23, 38, 46, 437, 874
Divisors of 825
List of positive integer divisors of 825 that divides 825 without a remainder.
1, 3, 5, 11, 15, 25, 33, 55, 75, 165, 275, 825
Divisors of 628
List of positive integer divisors of 628 that divides 628 without a remainder.
1, 2, 4, 157, 314, 628
Greatest Common Divisior
We found the divisors of 15, 874, 825, 628 . The biggest common divisior number is the GCD number.
So the Greatest Common Divisior 15, 874, 825, 628 is 1.
Therefore, GCD of numbers 15, 874, 825, 628 is 1
Given Input Data is 15, 874, 825, 628
Make a list of Prime Factors of all the given numbers initially
Prime Factorization of 15 is 3 x 5
Prime Factorization of 874 is 2 x 19 x 23
Prime Factorization of 825 is 3 x 5 x 5 x 11
Prime Factorization of 628 is 2 x 2 x 157
The above numbers do not have any common prime factor. So GCD is 1
Step1:
Let's calculate the GCD of first two numbers
The formula of GCD is GCD(a, b) = ( a x b) / LCM(a, b)
LCM(15, 874) = 13110
GCD(15, 874) = ( 15 x 874 ) / 13110
GCD(15, 874) = 13110 / 13110
GCD(15, 874) = 1
Step2:
Here we consider the GCD from the above i.e. 1 as first number and the next as 825
The formula of GCD is GCD(a, b) = ( a x b) / LCM(a, b)
LCM(1, 825) = 825
GCD(1, 825) = ( 1 x 825 ) / 825
GCD(1, 825) = 825 / 825
GCD(1, 825) = 1
Step3:
Here we consider the GCD from the above i.e. 1 as first number and the next as 628
The formula of GCD is GCD(a, b) = ( a x b) / LCM(a, b)
LCM(1, 628) = 628
GCD(1, 628) = ( 1 x 628 ) / 628
GCD(1, 628) = 628 / 628
GCD(1, 628) = 1
GCD of 15, 874, 825, 628 is 1
Here are some samples of GCD of Numbers calculations.
1. What is the GCD of 15, 874, 825, 628?
GCD of 15, 874, 825, 628 is 1
2. Where do I get the detailed procedure to find GCD of 15, 874, 825, 628?
You can find a detailed procedure to find GCD of 15, 874, 825, 628 on our page.
3. How to find GCD of 15, 874, 825, 628 on a calculator?
You can find the GCD of 15, 874, 825, 628 by simply giving the inputs separated by commas and click on the calculate button to avail the Greatest Common Divisor in less time.