Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
Make use of GCD Calculator to determine the Greatest Common Divisor of 305, 423, 468, 150 i.e. 1 largest integer that divides all the numbers equally.
GCD of 305, 423, 468, 150 is 1
GCD(305, 423, 468, 150) = 1
Ex: 10, 15, 20 (or) 24, 48, 96,45 (or) 78902, 89765, 12345
GCD of numbers 305, 423, 468, 150 is 1
GCD(305, 423, 468, 150) = 1
Given Input numbers are 305, 423, 468, 150
To find the GCD of numbers using factoring list out all the divisors of each number
Divisors of 305
List of positive integer divisors of 305 that divides 305 without a remainder.
1, 5, 61, 305
Divisors of 423
List of positive integer divisors of 423 that divides 423 without a remainder.
1, 3, 9, 47, 141, 423
Divisors of 468
List of positive integer divisors of 468 that divides 468 without a remainder.
1, 2, 3, 4, 6, 9, 12, 13, 18, 26, 36, 39, 52, 78, 117, 156, 234, 468
Divisors of 150
List of positive integer divisors of 150 that divides 150 without a remainder.
1, 2, 3, 5, 6, 10, 15, 25, 30, 50, 75, 150
Greatest Common Divisior
We found the divisors of 305, 423, 468, 150 . The biggest common divisior number is the GCD number.
So the Greatest Common Divisior 305, 423, 468, 150 is 1.
Therefore, GCD of numbers 305, 423, 468, 150 is 1
Given Input Data is 305, 423, 468, 150
Make a list of Prime Factors of all the given numbers initially
Prime Factorization of 305 is 5 x 61
Prime Factorization of 423 is 3 x 3 x 47
Prime Factorization of 468 is 2 x 2 x 3 x 3 x 13
Prime Factorization of 150 is 2 x 3 x 5 x 5
The above numbers do not have any common prime factor. So GCD is 1
Step1:
Let's calculate the GCD of first two numbers
The formula of GCD is GCD(a, b) = ( a x b) / LCM(a, b)
LCM(305, 423) = 129015
GCD(305, 423) = ( 305 x 423 ) / 129015
GCD(305, 423) = 129015 / 129015
GCD(305, 423) = 1
Step2:
Here we consider the GCD from the above i.e. 1 as first number and the next as 468
The formula of GCD is GCD(a, b) = ( a x b) / LCM(a, b)
LCM(1, 468) = 468
GCD(1, 468) = ( 1 x 468 ) / 468
GCD(1, 468) = 468 / 468
GCD(1, 468) = 1
Step3:
Here we consider the GCD from the above i.e. 1 as first number and the next as 150
The formula of GCD is GCD(a, b) = ( a x b) / LCM(a, b)
LCM(1, 150) = 150
GCD(1, 150) = ( 1 x 150 ) / 150
GCD(1, 150) = 150 / 150
GCD(1, 150) = 1
GCD of 305, 423, 468, 150 is 1
Here are some samples of GCD of Numbers calculations.
1. What is the GCD of 305, 423, 468, 150?
GCD of 305, 423, 468, 150 is 1
2. Where do I get the detailed procedure to find GCD of 305, 423, 468, 150?
You can find a detailed procedure to find GCD of 305, 423, 468, 150 on our page.
3. How to find GCD of 305, 423, 468, 150 on a calculator?
You can find the GCD of 305, 423, 468, 150 by simply giving the inputs separated by commas and click on the calculate button to avail the Greatest Common Divisor in less time.