Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
Make use of GCD Calculator to determine the Greatest Common Divisor of 618, 757, 323, 520 i.e. 1 largest integer that divides all the numbers equally.
GCD of 618, 757, 323, 520 is 1
GCD(618, 757, 323, 520) = 1
Ex: 10, 15, 20 (or) 24, 48, 96,45 (or) 78902, 89765, 12345
GCD of numbers 618, 757, 323, 520 is 1
GCD(618, 757, 323, 520) = 1
Given Input numbers are 618, 757, 323, 520
To find the GCD of numbers using factoring list out all the divisors of each number
Divisors of 618
List of positive integer divisors of 618 that divides 618 without a remainder.
1, 2, 3, 6, 103, 206, 309, 618
Divisors of 757
List of positive integer divisors of 757 that divides 757 without a remainder.
1, 757
Divisors of 323
List of positive integer divisors of 323 that divides 323 without a remainder.
1, 17, 19, 323
Divisors of 520
List of positive integer divisors of 520 that divides 520 without a remainder.
1, 2, 4, 5, 8, 10, 13, 20, 26, 40, 52, 65, 104, 130, 260, 520
Greatest Common Divisior
We found the divisors of 618, 757, 323, 520 . The biggest common divisior number is the GCD number.
So the Greatest Common Divisior 618, 757, 323, 520 is 1.
Therefore, GCD of numbers 618, 757, 323, 520 is 1
Given Input Data is 618, 757, 323, 520
Make a list of Prime Factors of all the given numbers initially
Prime Factorization of 618 is 2 x 3 x 103
Prime Factorization of 757 is 757
Prime Factorization of 323 is 17 x 19
Prime Factorization of 520 is 2 x 2 x 2 x 5 x 13
The above numbers do not have any common prime factor. So GCD is 1
Step1:
Let's calculate the GCD of first two numbers
The formula of GCD is GCD(a, b) = ( a x b) / LCM(a, b)
LCM(618, 757) = 467826
GCD(618, 757) = ( 618 x 757 ) / 467826
GCD(618, 757) = 467826 / 467826
GCD(618, 757) = 1
Step2:
Here we consider the GCD from the above i.e. 1 as first number and the next as 323
The formula of GCD is GCD(a, b) = ( a x b) / LCM(a, b)
LCM(1, 323) = 323
GCD(1, 323) = ( 1 x 323 ) / 323
GCD(1, 323) = 323 / 323
GCD(1, 323) = 1
Step3:
Here we consider the GCD from the above i.e. 1 as first number and the next as 520
The formula of GCD is GCD(a, b) = ( a x b) / LCM(a, b)
LCM(1, 520) = 520
GCD(1, 520) = ( 1 x 520 ) / 520
GCD(1, 520) = 520 / 520
GCD(1, 520) = 1
GCD of 618, 757, 323, 520 is 1
Here are some samples of GCD of Numbers calculations.
1. What is the GCD of 618, 757, 323, 520?
GCD of 618, 757, 323, 520 is 1
2. Where do I get the detailed procedure to find GCD of 618, 757, 323, 520?
You can find a detailed procedure to find GCD of 618, 757, 323, 520 on our page.
3. How to find GCD of 618, 757, 323, 520 on a calculator?
You can find the GCD of 618, 757, 323, 520 by simply giving the inputs separated by commas and click on the calculate button to avail the Greatest Common Divisor in less time.