Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
Make use of GCD Calculator to determine the Greatest Common Divisor of 696, 728, 33, 536 i.e. 1 largest integer that divides all the numbers equally.
GCD of 696, 728, 33, 536 is 1
GCD(696, 728, 33, 536) = 1
Ex: 10, 15, 20 (or) 24, 48, 96,45 (or) 78902, 89765, 12345
GCD of numbers 696, 728, 33, 536 is 1
GCD(696, 728, 33, 536) = 1
Given Input numbers are 696, 728, 33, 536
To find the GCD of numbers using factoring list out all the divisors of each number
Divisors of 696
List of positive integer divisors of 696 that divides 696 without a remainder.
1, 2, 3, 4, 6, 8, 12, 24, 29, 58, 87, 116, 174, 232, 348, 696
Divisors of 728
List of positive integer divisors of 728 that divides 728 without a remainder.
1, 2, 4, 7, 8, 13, 14, 26, 28, 52, 56, 91, 104, 182, 364, 728
Divisors of 33
List of positive integer divisors of 33 that divides 33 without a remainder.
1, 3, 11, 33
Divisors of 536
List of positive integer divisors of 536 that divides 536 without a remainder.
1, 2, 4, 8, 67, 134, 268, 536
Greatest Common Divisior
We found the divisors of 696, 728, 33, 536 . The biggest common divisior number is the GCD number.
So the Greatest Common Divisior 696, 728, 33, 536 is 1.
Therefore, GCD of numbers 696, 728, 33, 536 is 1
Given Input Data is 696, 728, 33, 536
Make a list of Prime Factors of all the given numbers initially
Prime Factorization of 696 is 2 x 2 x 2 x 3 x 29
Prime Factorization of 728 is 2 x 2 x 2 x 7 x 13
Prime Factorization of 33 is 3 x 11
Prime Factorization of 536 is 2 x 2 x 2 x 67
The above numbers do not have any common prime factor. So GCD is 1
Step1:
Let's calculate the GCD of first two numbers
The formula of GCD is GCD(a, b) = ( a x b) / LCM(a, b)
LCM(696, 728) = 63336
GCD(696, 728) = ( 696 x 728 ) / 63336
GCD(696, 728) = 506688 / 63336
GCD(696, 728) = 8
Step2:
Here we consider the GCD from the above i.e. 8 as first number and the next as 33
The formula of GCD is GCD(a, b) = ( a x b) / LCM(a, b)
LCM(8, 33) = 264
GCD(8, 33) = ( 8 x 33 ) / 264
GCD(8, 33) = 264 / 264
GCD(8, 33) = 1
Step3:
Here we consider the GCD from the above i.e. 1 as first number and the next as 536
The formula of GCD is GCD(a, b) = ( a x b) / LCM(a, b)
LCM(1, 536) = 536
GCD(1, 536) = ( 1 x 536 ) / 536
GCD(1, 536) = 536 / 536
GCD(1, 536) = 1
GCD of 696, 728, 33, 536 is 1
Here are some samples of GCD of Numbers calculations.
1. What is the GCD of 696, 728, 33, 536?
GCD of 696, 728, 33, 536 is 1
2. Where do I get the detailed procedure to find GCD of 696, 728, 33, 536?
You can find a detailed procedure to find GCD of 696, 728, 33, 536 on our page.
3. How to find GCD of 696, 728, 33, 536 on a calculator?
You can find the GCD of 696, 728, 33, 536 by simply giving the inputs separated by commas and click on the calculate button to avail the Greatest Common Divisor in less time.